Table IV. Thermal properties of transmissive optical materials
Material Symbol Thermal
Conductivity
Thermal
Expansion
Maximum
Use Temp.
Comments
    mW/cm·K ·10-6/K °C  
Sodium chloride NaCl 65 44 400 slightly sensitive to thermal shock
Potassium chloride KCl 65 36 400  
Potassium bromide KBr 48 43 300 sensitive to thermal shock
Cesium bromide CsBr 10 48 400  
Cesium iodide CsI 11 50 200  
           
Lithium fluoride LiF 40 37 400 very sensitive to thermal shock
Magnesium fluoride MgF2 ~150 11 500  
Calcium fluoride CaF2 97 19 600  
Strontium fluoride SrF2 83 18 ~600  
Barium fluoride BaF2 117 18 500 sensitive to thermal shock
           
Silver chloride AgCl 11 30 200  
Silver bromide AgBr 6 30 200  
Thallium bromochloride KRS-6 7 51 200  
Thallium bromoiodide KRS-5 5 60 200  
           
Magnesium oxide MgO 435 12 >2000  
Sapphire a Al2O3 240 8.4 1700  
Crystal quartz a SiO2 12 11 >1200  
Zirconia ZrO2 ~19 ~9 >1000  
           
Zinc sulfide ZnS 272 6.4 300  
Zinc selenide ZnSe 180 7.3 300  
Cadmium sulfide CdS 159 4.6 ~200  
Cadmium selenide CdSe ? 4.9 >200  
Cadmium telluride CdTe 63 4.5 300 opaque at high temperatures
           
Diamond C 23200 0.8 >700  
Silicon Si 1490 4.2 300 opaque at high temperatures
Germanium Ge 602 6 100 opaque at modest temperatures
Gallium arsenide GaAs 523 ~4.5 ~200 opaque at moderate temperatures
           
Silica glasses vSiO2 14 0.6 1070 immune to thermal shock
Borosilicate glasses BSCG ~11 ~3.2 500  
Fluorozirconate glass HMFG 6.3 17 150 sensitive to thermal shock
Arsenic trisulfide glass As2S3 2 25 ~150  
AMTIR-1 glass AMTIR 2.5 12 300 unlike Ge, not opaque at hi temps 
GASIR1 glass GASIR1 2.8 17 250 unlike Ge, not opaque at hi temps
GASIR2 glass GASIR2 2.3 16 200 unlike Ge, not opaque at hi temps 
           
Poly-ethylene HDPE 5 120 120 softens
Poly-methylpentene TPX 1.7 117 160  
Polyester PET 2.4 80 ~120 phase change at ~76°C
Poly-tetrafluoroethylene PTFE 2.5 100 250  
Fluorinated EPC FEPC 2.5 95 250  
Maximum use temperatures for semiconductors (e.g., Si, Ge, CdTe, GaAs) are far below maximum survival temperatures.
Their low maximum use temperatures are due to thermally generated free-carrier absorption and so are thickness-dependent.
High temperature chemical interactions with samples and window mounting materials can be a serious materials problem.
PET undergoes a phase change which can be utilized for tightening stretched-film windows with a heat gun.
These data were collected from a variety of sources, so this table probably contains errors. Use cautiously, and empirically verify critical values.
©2002 by D.W.Vidrine  « Author will not accept responsibility for any harm resulting from the use of this data! »
This material is copyrighted, and reproduction is forbidden without permission in writing.  You may obtain permission to print a single copy for personal use by first e-mailing or mailing a request to Vidrine Consulting, 1303 Domador, San Clemente, CA 92673.  Be sure to include your full name, business address, and purpose. ©2002 by W.V.
For additional information, contact Warren Vidrine at wv@vidrine.com, tel +1-949-489-8372.